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Abstract: There is significant interest in being able to predict where crimes will

happen, for example to aid in the efficient tasking of police and other protective

measures. We aim to model both the temporal and spatial dependencies often ex-

hibited by violent crimes in order to make such predictions. The temporal variation

of crimes typically follows patterns familiar in time series analysis, but the spatial

patterns are irregular and do not vary smoothly across the area. Instead we find

that spatially disjoint regions exhibit correlated crime patterns. It is this inde-

terminate inter-region correlation structure along with the discrete nature of small

counts of serious crimes that motivates our proposed forecasting tool. In particular,

we propose to model the crime counts in each region using an integer-valued first

order autoregressive process. We take a Bayesian nonparametric approach to flexi-

bly discover clusters of region-specific time series. We then describe how to account

for covariates within this framework. Both approaches adjust for seasonality. We

demonstrate our approach through an analysis of weekly reported violent crimes in

Washington, D.C. between 2001-2008. Our forecasts outperform those of standard

methods while additionally providing information from the posterior distribution

of forecasts, such as prediction intervals.

Key words and phrases: Bayesian nonparametric methods, INAR, low-count time

series, violent crime counts.

1. Introduction

Largely driven by reasons of computational tractability, a significant effort in

time series modeling has historically focused on Gaussian-based models including

the classical autoregressive (AR) and autoregressive moving average (ARMA)

processes, the latter of which can be equated with linear, state-space models.

With the advent of computational methods for simulation, interest has extended

beyond this class of models to capture various empirical features such as heavy-

tailed distributions or non-linear dynamics, though typically with a focus on

continuous-valued observations. A wide variety of applications, however, concern

counts, as in studies of infectious disease, sales and marketing, and demography.

For large counts, log-Gaussian transformations are often appropriate, enabling

classical time series models to once again be employed. Increasingly, we face
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numerous collections of small counts produced by the ability to collect and record

data at fine scales. Instead of aggregate statistics at the level of a company

or region, interest lies in individual- or local-level inferences. Two important

questions arise in such situations: (i) how should the dynamics of small counts

be modeled, and (ii) how do we appropriately share information among related

series when each individually provides only limited data? Echoing major facets of

the work of George Tiao (such as Tiao and Box (1981), Hillmer and Tiao (1982),

and Box and Tiao (2011)), we develop a Bayesian model for multiple time series

that can capture seasonal and exogenous factors.

We take motivation in particular from a dataset of weekly violent crime

counts in Washington D.C. recorded at the census-tract level. Police forces have

significant interest in being able to predict regions in which crimes are likely

to occur so that preventive measures may be employed in both the short- and

long-term. Based on our focus on violent crimes occurring within a small re-

gion (census tract), the weekly counts are (fortunately) small, as illustrated in

Figures 1 and 2. In such cases, for a given census tract one might propose

log-Gaussian Cox models with a Poisson observation model and latent Gaus-

sian process intensity. Such a formulation is problematic in our situation. For

instance, such a model would not present an explicit recursive structure unless

the latent Gaussian process were confined to the special case of a Gaussian au-

toregression. More relevant to our application, these models do not maintain

Poisson margins, a characteristic of our dataset (see Figure 2. To capture this

aspect of the crime counts, we instead employ an approach more akin to standard

AR models, namely Poisson, integer-valued AR (PoINAR) processes (Alzaid and

Al-Osh (1988), McKenzie (2000)). Such processes yield Poisson margins and a

simple recursive structure. This family has received relatively little attention in

time series modeling and a significant focus has been on univariate modeling.

Returning to our goal of modeling large collections of relatively short, low-

count time series, we are in a “large p, small n” scenario and seek a method

of sharing information among series. Although our counts of violent crimes are

indexed spatially, the trends do not vary smoothly across the region. Although

one might expect neighboring regions to experience similar crime rates, both

geographic features (e.g., Rock Creek Park in the northeast and the Anacostia

River in the south of Washington, D.C.) and transportation systems (railroad

tracks and highways) impede the spread of crime. Likewise, the combination of

demographic homogeneity within census tracts with heterogeneity among tracts

implies that neighboring tracts often have rather different crime dynamics. This

spatial heterogeneity is clear in the map of Figure 1 (right). The combination of

these attributes makes it challenging to borrow strength among adjacent regions

without over-smoothing. To avoid this problem, we consider the series as an
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Figure 1. Left: Map of the 188 census tracts in Washington, D.C.. Right:
Weekly average violent crime counts across the 188 census tracts.

indexed collection and ignore the explicit spatial structure. Our goal becomes

developing a type of Bayesian multiple shrinkage to cope with the large number of

series. To this end, we induce correlation between the spatial time series through

the innovations of multiple, series-specific PoINAR processes. We obtain multiple

shrinkage adaptively by using a Bayesian nonparametric approach that imposes

a Dirichlet process prior on the series-specific innovation rates. The Dirichlet

process leads to a clustering of rates and thus efficient sharing of the information

among the spatial time series in a flexible, data-driven manner. Our model

essentially shrinks the estimators for the time series that share a rate toward a

common mean, thereby yielding better out-of-sample forecasts.

We develop an efficient Markov chain Monte Carlo (MCMC) scheme for fit-

ting these models. The results on both simulated data and counts of violent

crimes in Washington, D.C. demonstrate that our proposed Bayesian multiple

PoINAR model produces out-of-sample forecasts that are more accurate than a

model treating each series independently via a conditional least squares (CLS)

PoINAR fit. These results can be attributed to the fact that our approach

discovers a small number of clusters relative to the number of census tracts.

This demonstrates the importance of multiple shrinkage to modeling large col-

lections of low-count time series. Another advantage, a byproduct of the Bayesian

framework, is that our model provides posterior distributions of the p-step-ahead

forecasts. These distributions are important in the context of forecasting crime

because the distribution of crime is right-skewed and decision makers often care

about preparing for worst-case scenarios. Prediction intervals for the number of

violent crimes in each region can help the police distinguish between an unusual

rise in violent crimes that requires intervention and a rise which is due to random

variation. Such trends are common in many applications, including e-commerce

sales.
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Our paper is structured as follows. In Section 3, we provide background

on univariate PoINAR processes. We then present our method for correlating

multiple PoINAR processes while maintaining Poisson margins in Section 4. The

associated posterior computations via MCMC are detailed in Section 5. In Sec-

tion 6, we briefly summarize a simulation and in Section 7, we analyze the crime

data of interest. Finally, in Section 8 we describe a method for accounting for

covariates, and in particular consider population size as a predictor.

2. Modeling Violent Crime

A s an example of our methodology, we consider rates of violent crimes in

the 188 census tracts in Washington, D.C.. The nation’s capital has consistently

ranked among the top cities for rates of violent crimes in the United States.

Violent crimes in our data consist of rape, robbery, arson and aggravated assault.

Along with murder, these types of crimes define the FBI part 1 violent crimes

list. Part 1 crimes are considered serious and are directly reported to the police

(as opposed to other law agencies such as the IRS). Indeed, the Washington,

D.C. police department keeps a record of all reported type 1 violent crimes and

makes it publicly available through their website (http://crimemap.dc.gov/

CrimeMapSearch.aspx.

We begin with a purely geographic approach that is aligned with police

procedures and work solely with raw crime counts within census tracts. We then

examine how to account for covariates, in particular population size, in Section 8.

Figure 1 (left) shows a map of Washington, D.C. with boundaries of the

census tracts superimposed. A census tract consists of adjacent street blocks se-

lected to be homogeneous with respect to demographic features such as economic

status and living conditions. The sizes of the census tracts vary widely depend-

ing on population density. According to the 2,000 Census, tracts in Washington,

D.C. average 3,043 residents, ranging from 149 to 7,278.

The variation of the counts of violent crimes within a tract is well approx-

imated by a Poisson model. Figure 2 (top-left) shows the frequencies (on a log

scale) of all weekly counts, combined over tracts and years. Most often, no vi-

olent crime happens in a tract; more than half of the 78,208 weekly counts are

zero, and zero is the most common count for 90 of the 188 tracts. As an ex-

ample of the preponderance of zeros, Figure 2 (top-right) shows the sequence of

weekly counts for the tract with the median rate of violent crimes. (Section 6

of the Supplementary Material displays the counts for other individual tracts.)

Note that the near-linear decay of the log frequencies in Figure 2 (top-right)

is not typical of a Poisson distribution, but recall that these frequencies mix

counts from tracts with very low rates with counts from tracts with higher rates.

To motivate our use of Poisson models for the very small counts in individual

http://crimemap.dc.gov/CrimeMapSearch.aspx
http://crimemap.dc.gov/CrimeMapSearch.aspx
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Figure 2. Top Left: Histogram of weekly counts of violent crime in the
188 census tracts of Washington, D.C. Top Right: Counts of violent crimes
in the tract with median rate. Bottom left: Weekly variance versus mean
for the tracts. Bottom right: Histogram of p-values of chi-squared test of
Poisson variation.

tracts, Figure 2 (bottom-left) plots the variances of the weekly counts by tract

versus the corresponding mean, with a diagonal line for comparison. The data

are slightly over-dispersed, but close to matching this characteristic of Poisson

variation. Within tracts, we also computed the p-values of the chi-squared test

of goodness-of-fit for tract-level Poisson models. For each tract, we compared

the frequency of counts to the expected counts from a Poisson model with mean

set to the tract average. The histogram of these p-values shown in Figure 2

(bottom-right) is roughly uniform. (We excluded 21 tracts whose frequencies

were too small for this test.)

2.1. Related approaches

Multivariate Poisson-based models are a natural match to multivariate time
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series of counts, and this structure has been employed in various prior applica-

tions. For example, Boudreault and Charpentier (2011) model the occurrences of

earthquakes using a maximum likelihood approach to infer the parameters of a

multivariate INAR(1) process with Poisson innovations. (This formulation does

not maintain Poisson margins, as discussed in Section 3. Taddy (2010) employed

Poisson processes to track the intensity of violent crimes in Cincinnati and treats

these as point processes. Taddy (2010) factors the spatial Poisson rate into a

process density, modeled using Bayesian nonparametrics, and an overall inten-

sity. Both were allowed to evolve in time. Such a formulation, however, assumes

spatial smoothness of the crime rates. Additionally, Taddy (2010) focuses on

in-sample inference rather than predicting future events. In contrast, our re-

search focuses on models for areal data and provides methods to forecast these

as multiple integer-valued, low-count time series. We harness the efficient and

elegant structure of INAR(1) processes and present a method for modeling mul-

tiple, correlated time series while maintaining Poisson margins. The correlations

are induced via a Bayesian nonparametric clustering of the time series, and in

doing so, we efficiently share information to produce more accurate out-of-sample

predictions. Bayesian nonparametric methods have previously been studied as

tools for data-driven clustering analysis (cf., Teh et al. (2006), Dorazio et al.

(2008), Fox et al. (2010)). These studies, however, focus on clustering either

continuous-valued time series or Poisson counts which have no time component.

3. Univariate PoINAR(1) Background

A univariate PoINAR(1) model is defined as follows (Alzaid and Al-Osh

(1988)):
Yt+1 = α ◦ Yt + ϵt+1 for t = 0, 1, 2, . . . , (3.1)

where the innovations {ϵt} are iid Poisson. The operator ◦ denotes binomial

thinning. For any nonnegative integer-valued random variable X and for any

α ∈ [0, 1], the random variable α ◦X is defined

α ◦X =

X∑
i=1

Bi(α), (3.2)

where Bi(α) are independent, identically distributed Bernoulli random variables

with success probability α. Given a Poisson distribution on the initial state Y0
with finite mean µ = E Y0 and independence between Yt and ϵt ∼ Poisson((1 −
α)µ), the construction (3.1) yields a strongly stationary process. In essence,

to obtain a stationary Poisson marginal distribution from (3.1), the innovations

must also be Poisson (Alzaid and Al-Osh (1988), Steutel and Van Harn (1986),

Wolpert and Brown (2011)).
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4. Multivariate PoINAR(1)

In this section we define a multivariate INAR process that retains Poisson

margins. We first introduce the basic model and then demonstrate how to induce

correlations among the component series by placing a Dirichlet process prior on

the rate parameters of the Poisson innovations. We conclude this section by

highlighting the similarities and differences between the proposed model and the

vector autoregressive process, which is the corresponding model with Gaussian

margins.

Throughout, let Yl,t denote the number of violent crimes at tract l = 1, . . . , L

during week t = 1, . . . , T . Furthermore, let Yt := (Y1,t, . . . , YL,t) denote a vector

of crime counts at time t and ϵt := (ϵ1,t, ϵ2,t, . . . , ϵL,t) the vector of innovations.

4.1. The multiple PoINAR(1) process

One might imagine employing a multivariate PoINAR(1) analogue of a vector

autoregressive process by considering:

Yt+1 = α ◦ Yt + ϵt+1 ,

where α is an L× L matrix with entries 0 ≤ αi,l ≤ 1, and α ◦ Yt is defined as:

[α ◦ Y ]i,t :=

L∑
l=1

αi,l ◦ Yl,t, (4.1)

with αi,l ◦ Yl,t defined by the binomial thinning operator defined in (3.2). Even

in the simplest scenario of ϵi,t being independent Poisson innovations, however,

the resulting margins are in general not Poisson. In fact, it is straightforward

to prove that when the off-diagonal elements of the thinning matrix α are non-

zero, a stationary distribution exists but is no longer the Poisson distribution

McKenzie (2000), Pedeli and Karliss (2011)). Such a multivariate INAR(1) was

considered in Boudreault and Charpentier (2011).

The one scenario that preserves Poisson margins occurs if α is diagonal. The

model is
Y1,t+1

Y2,t+1
...

YL,t+1

 =


α1 0 . . . 0

0 α2 . . . 0
...

...
. . .

...

0 . . . 0 αL

 ◦


Y1,t
Y2,t
...

YL,t

+


ϵ1,t+1

ϵ2,t+1
...

ϵL,t+1

 . (4.2)

We refer to this process as the multiple PoINAR(1). For notational convenience

we denote the diagonal elements by αl := αl,l. The diagonal thinning matrix

implies that at time t, the lth entry of the thinned random vector is only a

function of the lth location:
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[α ◦ Yt]l = αl ◦ Yl,t. (4.3)

For the innovations processes, we assume ϵl,t|Λl,t ∼ Poisson(Λl,t). Condi-

tional on the rate parameters Λl,t, the innovations are independently Poisson dis-

tributed across time and space. The resulting multiple INAR(1) yields a marginal

Poisson distribution for each element in Yt. We emphasize that restricting α to

a diagonal thinning matrix not only dramatically reduces the number of model

parameters, but also produces a process with Poisson margins.

Conditioning on the rate parameters {Λl,t} yields L independent time series.

To allow such models to capture dependence among the time series, we introduce

a Dirichlet process mixture model for the innovations.

4.2. Capturing dependence

There are several ways to induce dependence among the elements of the

multiple PoINAR(1) process. The model has two sources of variation: the mul-

tivariate binomial thinning operator and the innovation process. We propose

to generate the dependence through the innovations and assume that the bino-

mial thinning operators are independent across the time series to maintain Pois-

son margins. This formulation shares information between tracts while allowing

tract-dependent autocorrelations. Furthermore, this focus on the innovations

provides computational efficiencies as described in Section 5.

The innovations are assumed to follow a Poisson distribution with rates Λl,t.

The rate is a function of both the location l and the time period t of the specific

innovation ϵl,t. We decompose the rate Λl,t into a product of spatial and temporal

components:

Λl,t = λl θs(t), (4.4)

where the summands are a location-specific rate, λl, and a seasonal monthly

rate, θs(t), that is spatially homogeneous. Crime rates often vary seasonally, with

a higher rate during warmer months of the year (McDowall, Loftin and Pate

(2012)). Here, s(t) is a function that maps week t to its associated month. That

is, we assume a constant seasonal effect within months and model this effect with

parameters θ1, . . . , θ12. The resulting model for the innovations can be written

as follows:
ϵl,t ∼ Poisson(λl θs(t)). (4.5)

The temporal component induces some dependence across tracts because it is

shared across the different time series. A Dirichlet process (DP) prior on the

rates, λl, provides the balance of the dependence across tracts, but in a spa-

tially heterogeneous manner by inducing a clustering on the rate parameters, as

detailed below.
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The Dirichlet process, denoted DP(τ,G0), provides a distribution over prob-

ability measures with a countably infinite number of atoms. Here, G0 denotes a

base measure on some space Ω, which in our application represents the positive

real line on which the rates λl are defined. The concentration parameter τ > 0

controls the distribution of the atomic masses, and thus the induced clustering

properties of the process. A draw from a DP can be constructed as:

G =
∞∑
k=1

βk δϕk
, ϕk

iid∼ G0, (4.6)

where the weights βk are obtained via the stick-breaking process (Sethuraman

(1994)):

βk = νk

k−1∏
l=1

(1− νl) νk ∼ Beta(1, τ). (4.7)

The process sequentially partitions the unit interval: the kth weight is a random

proportion νk of the segment that remains after the first k− 1 weights have been

chosen. We denote this distribution by β ∼ GEM(τ).

The DP has proven useful in many applications due to its clustering prop-

erties (cf., Teh et al. (2006)). The predictive distribution of draws λl ∼ G shows

why the DP produces clusters. Because probability measures drawn from a DP

are discrete, there is a strictly positive probability of multiple observations λl
taking identical values within the set {ϕk}, with ϕk defined in (4.6). For each

sampled observation λl, let zl index the corresponding unique parameter ϕk such

that λl = ϕzl . The predictive distribution on the membership variables can be

written as

ZL+1|(z1, . . . , zL, τ) =

{
K + 1 w.p. τ

L+τ ,

k w.p. nk
L+τ for k = 1, . . . ,K,

(4.8)

where nk indicates the number of members taking value k,and K identifies the

number of distinct values observed through the first L samples. The distribution

on partitions induced by the sequence of conditional distributions in (4.8) is com-

monly referred to as the Chinese restaurant process (CRP). The CRP provides

an alternative representation to the DP (Pitman (2006)). This representation

emphasizes the reinforcement property of the DP that leads to its clustering

properties. It can be shown that the expected number of clusters using the CRP

grows as O(τ log(L)) where L is the number of observations (see Teh (2011) for a

detailed proof). This implies that the average number of clusters is much smaller

than the number of observations.

In our model for crime rates, we impose a DP prior on the L tract-specific

rates, λl. The number of observations from the DP is equal to the number of
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Figure 3. Graphical model of the multiple PoINAR(1) model. Left: Innova-
tions generating from a Dirichlet process mixture model as in (4.9). Right:
An equivalent representation using cluster indicator variables z1, . . . , zL as
in (4.10).

tracts, rather than the number of time points. The DP prior thus groups the

time series according to their corresponding tract-specific rates into a few clus-

ters; tracts in the kth cluster share a common rate ϕk. The grouping of the

time series into a small number of clusters provides useful shrinkage that pools

information across the cluster, thereby yielding more accurate out-of-sample pre-

dictions for the multiple time series. When we combine the tract-specific rates

and the seasonal effects, we obtain a generating process for the innovations:

ϵl,t ∼ Poisson(λl θs(t)) l = 1, . . . , L t = 1, . . . , T,

θm ∼ F m = 1, . . . , 12,

λl ∼ G l = 1, . . . , L,

G ∼ DP(τ,G0) .

(4.9)

For our application, we choose F to be a gamma distribution (see (5.6)).

Figure 3 (left) shows a graphical representation of our dependent multi-

ple PoINAR(1) process. For details on interpreting such graphical representa-

tions, the reader is referred to Jordan (2004). Alternatively, we can employ an

equivalent representation using the GEM distribution, membership indicators

z1, . . . , zL, and unique rate parameters ϕk (see Figure 3 (right)):

ϵl,t ∼ Poisson(ϕzl θs(t)) l = 1, . . . , L t = 1, . . . , T,

θm ∼ F m = 1, . . . , 12,

zl ∼ β l = 1, . . . , L,

ϕk ∼ G0 β ∼ GEM(τ) k = 1, 2, . . . .

(4.10)
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4.3. Prior specification

The multiple PoINAR(1) requires estimation of three main components:
thinning values (α1, . . . , αL), one for each tract-specific time series monthly sea-
sonal effects, (θ1, . . . , θ12), and rates for each tract, [λ1, . . . , λL]. The Bayesian
framework places prior distributions on each of these three elements. Our priors
are both computationally convenient and weakly-informative. For the thinning
values and monthly seasonal effects we specify:

αl
i.i.d.∼ Beta(η1, η2) for l = 1, . . . , L, (4.11)

θm
i.i.d.∼ Gamma(ξ1, ξ2) for m = 1, . . . , 12.

We also explored the half-normal distribution as a prior for the seasonal effect,
and we found the choice did not produce material changes from the results pre-
sented in Section 7. The DP prior on the tract-specific rates λl outlined in Sec-
tion 4.2 requires the specification of the base measure, G0, and the concentration
parameter, τ . We choose the base measure to be the Gamma(γ1, γ2) distribu-
tion, which is well suited to our model because not only is it conjugate to the
Poisson distribution, but it also provides a natural interpretation. In particular,
we have a prior belief that weekly rates of violent crime are typically small, but a
few tracts have higher rates. Hence, a gamma distribution with shape and scale
parameters γ1 = 1 and γ2 = 0.1 reflects these prior beliefs. For the concentration
parameter, we specify τ ∼ Gamma(aτ , bτ ), as suggested by Escobar and West
(1994).

4.4. Relationship to the vector AR(1) process

The continuous counterpart to the multiple PoINAR(1) is the Gaussian first-
order vector autoregressive process, denoted VAR(1). This process is composed
of L possibly dependent AR(1) processes and can be formulated as

Yt+1 = AYt + ϵt+1 t = 1, . . . , T,

ϵt|Σ
i.i.d.∼ N(0,Σ),

Yl,0|µl,0, σl,0
i.i.d.∼ N(µl,0, σl,0) l = 1, . . . , L,

(4.12)

where A denotes an L× L matrix whose maximum eigenvalue has modulus less
than 1, [Σ]i,j = 0 for i ̸= j and [Σ]i,i = σ2i . Compare this specification to the
multiple PoINAR(1):

Yt+1 = α ◦ Yt + ϵt+1 t = 1, . . . , T,

ϵt|Λt
i.i.d.∼ [Poisson(Λ1,t),Poisson(Λ2,t), . . . ,Poisson(ΛL,t)],

Yl,0|Λl,0
i.i.d.∼ Poisson(Λl,0) l = 1, . . . , L.

(4.13)
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These two models not only share similar notation, but also possess two common

characteristics:

• The distributions of the innovations match the marginal distributions of Yl,t.

The multiple PoINAR(1) with diagonal α (αi ∈ [0, 1]) has Poisson marginal

distributions while the VAR(1) has Gaussian marginals for any suitable matrix

A. With appropriate initialization and innovations, the resulting processes

have a Poisson or Gaussian stationary distribution, respectively.

• IfA is diagonal, the autocorrelation coefficient in both models, corr(Yl,t+1, Yl,t),

is the diagonal element of its coefficient matrix, αl,l or Al,l.

These similarities to the continuous VAR(1) make the discrete PoINAR(1)

especially attractive and easy to interpret. The VAR(1) process, however, has a

single source of variation—the innovations process—while the PoINAR(1) pro-

cess has two: the binomial thinning and innovations processes. This key differ-

ence complicates inference for the PoINAR(1) model that we address in Section 5.

5. The MCMC Sampler

The PoINAR(1) model combines two underlying processes: the binomial

thinning process and the innovations process. Each of these processes has its

own parameters: binomial thinning uses the thinning parameters {αl} and the

innovations process uses the rates {ϕk} and seasonal effects {θm}. For posterior
computations within our Bayesian framework, we employ an MCMC sampler. In-

tuitively, the idea is to sample a posterior latent innovations sequence and then

condition on this sequence to sample both the latent DP clustering of census

tracts and also the thinning parameters and seasonal effects. In contrast, in the

corresponding VAR(1) model there is no need to sample the innovations sequence

because they are uniquely determined by the observations and model parameters.

Therefore, one would expect the multiple PoINAR(1) model to be computation-

ally cumbersome compared to its VAR(1) counterpart. However, our proposed

sampler harnesses computational advantages from small observed counts in our

crime data and sufficient statistics implied by the Poisson model. We outline

the resulting sampler below. For detailed derivations, see the Supplementary

Material.

1. Sample the innovations, ϵ := [ϵ1, . . . , ϵL] where ϵl := [ϵl,1, . . . , ϵl,T ] is the in-

novations series for the lth tract. The full conditional distribution factors

are

P (ϵ|Y ,α,λ,θ) =
L∏
l=1

T∏
t=2

P (ϵl,t|Yl,t−1, Yl,t, αl, λl,θ). (5.1)
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Given the observations Y and the parameters of the multiple PoINAR process,
the innovations can be sampled independently for each tract and each time
point. The possible values satisfy max{0, Yl,t − Yl,t−1} ≤ ϵl,t ≤ Yl,t with
corresponding probabilities

P (ϵl,t|Yl,t−1, Yl,t, αl, λl,θ)

∝ 1

ϵl,t!(Yl,t − ϵl,t)!(Yl,t−1 − (Yl,t − ϵl,t))!

(
λlθs(t) (1− αl)

αl

)ϵl,t

. (5.2)

Although this expression does not define a well-known discrete distribution, it
is analytically tractable because of the small counts in the data (max{0, Yl,t−
Yl,t−1} ≤ ϵl,t ≤ Yl,t and Yl,t is assumed to be small). In the crime data
for Washington, D.C., maxYl,t = 11. Another important consideration that
reduces the computational burden is that certain ϵl,t values can be determin-
istically set from the observations vector Yt: if yl,t = 0 then ϵl,t = 0 and
if yl,t−1 = 0 then ϵl,t = yl,t. Since our crime data has many zero counts,
these constraints substantially lower the computational cost of this portion of
the sampling. If larger counts are observed, then one can use a Metropolis-
Hastings step to sample from this distribution with a Poisson proposal distri-
bution. Importantly, if the observed counts are large enough, one can apply
a stabilizing transformation such as the square root and model the resulting
process as a VAR. This strategy has been shown by Brown et al. (2005) to
yield satisfactory results in the univariate case when λl exceeds (roughly) 5.

2. Sample the membership indicator vector, z := [z1, . . . , zL]. We use the DP-
induced Chinese restaurant process (CRP) and iteratively sample the tract-
specific cluster indicators

P (zl = k|z/l, ϵ,Θ, γ1, γ2, τ) ∝
{
τ pl,0 for k = K + 1,

nk pl,k for k = 1, . . . ,K,
(5.3)

where K + 1 identifies a previously unseen cluster, Θ =
∑T

t=1 θs(t), and z/l
is the vector of membership indicators, not including the lth term. The first
terms, (τ, nj), of (5.3) arise from the CRP prior of (4.8) and the exchange-
ability of the process such that each zl can be treated as the last. The second
terms, (pl,0, pl,j), correspond to the likelihood of the innovations ϵ given the
cluster assignments (zl = k, z/l) and seasonal effects Θ, marginalizing the
cluster-specific rates ϕk. The terms are given by the negative binomial distri-
butions

pl,0 =
Γ(Sl + γ1)

Γ(γ1)Sl!

(
γ2

Θ+ γ2

)γ1 ( Θ

Θ+ γ2

)Sl

, (5.4)

pl,j =
Γ(Sl +Aj + γ1)

Γ(Aj + γ1)Sl!

(
1− Θ

nj Θ+ γ2

)Aj+γ1 ( Θ

nj Θ+ γ2

)Sl

,
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where Sl =
∑T

t=1 ϵl,t and Aj =
∑

i:zi=j,i̸=l Si. Here pl,0 and pl,j only rely on
sums of the innovations and the sum of seasonal effects. We also highlight that
the conditional conjugacy of our formulation allows us to use the collapsed
sampler of (5.3) for the zl, marginalizing {ϕk}.

3. Sample unique rates, ϕk. Although the rates collapse away in sampling the
cluster indicators, zl, they are needed for sampling the innovations sequence
(Step 1) and seasonal effects (Step 3). As such, we sample the unique rates as
auxiliary variables for these steps, and then discard them. For each currently
specified cluster, sample ϕk as

ϕk|ϵ, z,Θ, γ1, γ2 ∼ Gamma(Bk + γ1, nk Θ+ γ2), (5.5)

where Bk =
∑

l∈{v:zv=k} Sl. Again, we only rely on the sum of the innovations,
Sl, to compute the posterior distribution.

4. Sample the seasonal effects vector, [θ1, . . . , θ12]. The mth element of this
vector can be sampled as

θm|ϵ,ϕ, ξ1, ξ2 ∼ Gamma
( L∑

l=1

∑
t:s(t)=m

ϵl,t + ξ1, qm

L∑
l=1

λl + ξ2

)
, (5.6)

where qm counts the number of occurrences of the mth month in the data.
Notice that for this step we sum the innovations over tracts rather than time.

5. Sample the vector of thinning parameters, [α1, . . . , αL]. For tract l,

αl|ϵl,Yl, η1, η2 ∼ Beta(

T∑
t=2

Yl,t − Sl + η1,

T∑
t=2

(Yl,t−1 − Yl,t) + Sl + η2), (5.7)

where Sl is defined as in Step 2.

6. Sample the concentration parameter, τ , for the Dirichlet process prior accord-
ing to Escobar and West (1994).

If the model did not include seasonal effects, then one could simply sample
the sum of the innovations, Sl, instead of the vector of innovations, ϵl. This
would reduce the computational cost of the sampler since Step 1 is the most
time consuming.

6. Simulation Examples

To demonstrate the performance of our model, we simulated datasets from 9
different multiple PoINAR(1) processes of (4.2). Each dataset had L = 100 time
series (tracts) with T = 208 observations that correspond to 4 years of weekly
data. We grouped the multiple time series into four equally sized clusters that
each share a common rate. The data sets varied in the choice of:
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Table 1. RMSE of estimates of the conditional mean obtained by the CLS,
SPP and our Bayesian nonparametric method. The last row shows the ex-
pected (true) conditional expected value.

Thin=0.1 Thin=0.5 Thin=0.9
Rates Easy Med Hard Easy Med Hard Easy Med Hard
SPP RMSE 0.477 0.113 0.005 1.674 0.880 0.293 6.128 1.155 0.552
CLS RMSE 0.306 0.080 0.035 0.284 0.114 0.057 0.343 0.118 0.055
BNP RMSE 0.219 0.058 0.026 0.260 0.086 0.045 0.299 0.075 0.043
E(Y·,T+1) 5.383 1.001 0.317 9.861 1.848 0.591 52.161 9.908 3.0633

1. The separation between the cluster rates, ϕk. We examined an “easy” setting

in which the four cluster rates were well separated at 1, 3, 6, 10, a “medium

setting” with less distinct rates 0.01, 0.5, 1.2, 2, and a “hard” setting with rates

0.1, 0.2, 0.3, 0.6.

2. The thinning values, αl, which determine the autocorrelation of the individual

PoINAR(1) processes. The examples used a common choice for αl for all tracts

in a dataset, chosen from αl = 0.1, 0.5, 0.9.

We evaluated the root mean square error (RMSE) and absolute percentage

error (APE) of our MCMC sampler both in- and out-of-sample. These metrics

measure the distance between the true population expected value and its corre-

sponding estimate based on the observed L = 100 time series. The simulation

results show that our model produces accurate out-of-sample forecasts under var-

ious configurations. Table 1 presents the RMSE of our Bayesian nonparametric

model compared to the RMSE of a simple Poisson process model (SPP) and the

conditional least-squares model (CLS). (The Supplementary Material, Section 2,

details these.) The results in Table 1 show that our model outperforms these al-

ternatives. As expected, the larger the separation between the cluster rates, the

easier it is for our method to identify the true clusters and yield better estimates

for their parameters. Also, higher autocorrelation helps our method produce

more accurate estimators.

These simulation results indicate that the sampler finds clusters when they

exist. It is also important to demonstrate that the model does not spuriously

spawn clusters when the data are homogeneous. As part of our simulations, we

examined the performance of these methods in the situation in which a single

process (cluster) generates all of the time series. The findings are presented in

Section 3 of the Supplementary Material, which also contains a more detailed

description of the simulations and results presented in this section. As one would

hope, under these conditions we identify a single cluster, further validating our

methodology.
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7. Analysis of Violent Crimes

We examined both in- and out-of-sample results using the reported counts of

violent crimes in Washington, D.C., as described in Section 1. The data consist

of L = 188 time series (census tracts) with T = 418 weeks of counts in 2001

through 2008. We used the first 7 years of data to train our model and the last

52 weeks to evaluate its out-of-sample forecasts. We ran 5 MCMC chains for

5, 000 iterations from different initial values, each drawn from the priors

θm ∼ Gamma(1, 1) αl ∼ Beta(1, 1)

τ ∼ Gamma(2, 4) ϕi ∼ Gamma(1, 1).
(7.1)

We performed a sensitivity analysis for the hyperparameters during the simula-

tion stage, but found no significant changes to the results. We discarded the first

1,000 iterations as burn-in and then thinned the remaining 4, 000 samples. While

thinning was not absolutely necessary, we found it computationally convenient

to thin our MCMC output by retaining the full output of every 50th iteration.

Some recent discussion about thinning can be found in Owen (2015). Therefore,

our inference for each parameter of the model is based on the resulting 80·5 = 400

MCMC samples. We used the scale reduction factor recommended by Gelman

and Rubin (1992) to monitor convergence across the chains.

We begin by looking at the distribution of the number of clusters over the

400 samples in the left panel of Figure 4. The mode is 17 clusters, which is a

substantial reduction from the original L = 188 time series. Figure 5 presents

a representative cluster assignment along with the posterior rates for this as-

signment. This cluster assignment was selected as the assignment that had the

minimum average Hamming distance across the different iterations (see Fox et al.

(2011) for further details). An interesting phenomenon was that census tracts

assigned to the same cluster were frequently spatially separated.

We further examined the posterior means for the rates, λl, of the 188 census

tracts and their corresponding thinning values, αl, across the MCMC samples.

Figure 6 (left) maps the posterior mean rates for the census tracts in Washing-

ton, D.C.. We can see certain regions that exhibit higher rates (e.g., tracts that

correspond to a southern portion of the city, a central portion along 16th Street,

and an east-central portion along Rhode Island Avenue.) The results of Fig-

ure 6 are also substantiated by Figure 1 (right). Figure 7 compares the sample

autocorrelation of the counts for each tract with the posterior mean thinning

values. The sample autocorrelation was calculated using the classical first order

autocorrelation estimator for each time series separately without adjusting for

seasonality. As previously explained, the thinning values in our model determine

the autocorrelation for each INAR(1) time series. The comparison shows that the
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Figure 4. Histograms of the posterior number of clusters for the multiple
dependent PoINAR(1) described in Section 4.2 (left) and the population ad-
justed multiple dependent PoINAR(1) model described in Section 8 (right).

Rate

2.2891

1.6726

1.367

1.0617

0.7921

0.5461

0.3753

0.2505

0.1728

0.1603

0.1208

0.0552

0.0263

0.0191

0.0108

Figure 5. The minimum average Hamming distance cluster assignment along
with the corresponding posterior rate values.

raw data autocorrelations vary over a wider range than their corresponding pos-

terior mean values and some of these raw autocorrelations are slightly negative.

Two reasons can account for the differences between the two.

1. Our model only allows the thinning value to range between [0, 1] and therefore

cannot account for negative autocorrelation. We believe that the (small) neg-

ative raw autocorrelations are probably due to noise variation and therefore

we are less concerned about this phenomenon. The standard error of an es-

timated first-order autocorrelation for white noise is approximately 1/
√
T =

1/
√
418 ≈ 0.05; hence the bulk of raw autocorrelations are within about 2

standard errors of zero.

2. The posterior mean thinning values are adjusted for seasonal effects, whereas

the raw autocorrelations are not. The values would be smaller in magnitude
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2.22

0.056

0.238

0.36

0.516

0.722

0.796

0.943

1.043

Figure 6. Map of posterior mean rates, λl, sampled from the multiple
PoINAR(1) model described in Section 4.2 (left) and the population ad-
justed multiple PoINAR(1) model described in Section 8 (right).

Figure 7. Histogram of raw data autocorrelations (left) and posterior mean
autocorrelations αl (right).

after adjusting for the seasonality, as our results suggest.

For the out-of-sample evaluation we compared our MCMC method to the

CLS and SPP. For both the CLS and our method, we used the mean of the

forecast distribution (posterior predictive distribution) one-week-ahead as the

predictor for the crime counts in each tract,

ŷl,T+1 = αl yl,T + λl θs(T+1). (7.2)

For CLS, we simply plugged-in the estimates of αl, λl, and θm for each tract. For

our method, we computed an MCMC-based estimate by evaluating (7.2) for each
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of the 400 MCMC iterations and used the average of these as the final predicted

value (see Section 3 of the Supplementary Material for further details). For the

SPP, we averaged the past values as the predictor.

We predicted the one-week-ahead number of crimes in each tract for the

first week of each month during 2008. Table 2 shows the one-week-ahead pre-

dicted mean RMSE and corresponding standard errors, conditional on the last

observed value. The results indicate that when the last observed count is one of

the most frequent values (0,1,2), our method produces lower RMSE. For the less

frequent, higher counts (3,4), the performances of all of the methods are (sta-

tistically) equivalent. This behavior is to be expected since our method shrinks

the estimators toward the mean and therefore should perform better for lower,

more frequent counts and worse in the rare cases of high counts. A summary of

the average one-week-ahead bias is presented in Section 4 of the Supplementary

Material. In general, our method produces the smallest bias, but the differences

between the methods are not significant except when the last observed count is

zero.

The one-step-ahead conditional mean value is the best linear unbiased es-

timator under quadratic loss. Since the CLS method minimizes the observed

squared error, it is only natural to evaluate all three methods using the same

loss function. Alternatively, Berk (2008) proposed a quantile loss function that

reflects the sensitivity of the police department to forecasting errors. Under a

υ-quantile loss function, the predictor is just the predictive distribution’s υ quan-

tile. Using our method, one can easily sample from the following one-step-ahead

predictive posterior distribution and evaluate any desired quantile:

P (Yl,t+1 = yl,t+1|Yl,t = yl,t, α
(m)
l ,θ(m), λ

(m)
l )

=

∞∑
r=0

(
yl,t−1

yl,t − r

)
(α

(m)
l )yl,t−r (1−α(m)

l )yl,t−1−(yl,t−r)
e
−ϕ

(m)
l θ

(m)
s(t+1) (ϕ

(m)
l θ

(m)
s(t+1))

r

r!
,

(7.3)

where λ
(m)
l = ϕ

(m)

z
(m)
l

, θ(m), and α
(m)
l are the rate, seasonal component, and thin-

ning value estimated during the mth iteration of the MCMC sampler. Figure 8

shows the 95% and 99% quantiles for each of the 188 tracts and the correspond-

ing one-step-ahead true value, yl,T+1. The quantiles may also be used to provide

prediction intervals for each tract. A police department can use these intervals

along with the point estimate to distinguish between an unusual surge in crimes

which requires allocation of more resources, and a random rise in crimes, which

would not benefit from an intervention.
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Figure 8. The predictive posterior distribution for each of the 188 tracts.
The red dots correspond to the median predicted number of violent crimes
for each tract. The blue triangles and green crosses correspond to the 95%
and 99% percentiles of the predictive posterior distribution, respectively.
The black stars corresponds to the test-set actual observed value of crimes.

Table 2. One-step-ahead average RMSE as a function of the last observed
value of y·,T . We also provide the standard errors associated with the average
RMSE.

y·,T 0 1 2 3 4 Overall
SPP RMSE 0.8373 0.966 1.1829 1.4722 1.4252 0.970

(0.034 ) (0.0311) (0.0453) (0.088 ) (0.1631) (0.0167 )
CLS RMSE 0.7729 0.9501 1.0605 1.1370 1.3258 0.9235

(0.0245) (0.0430) (0.0660) (0.0982) (0.1991) (0.0368 )
Dependent PoINAR RMSE 0.7222 0.9172 1.009 1.0225 1.1600 0.72168

(0.0135) (0.0172) (0.4336) (0.0862) (0.1782) (0.0016 )
Frequency 0.5900 0.2340 0.1160 0.0400 0.0200 1

8. Multiple PoINAR(1) with Covariates

Previous research has shown that crime rates are associated with demo-

graphic covariates, and we have several ways to incorporate such features in our

Bayesian model. For example, Blei and Frazier (2010) incorporate covariates

directly into the clustering mechanism. This approach might improve the accu-

racy of forecasts, but it would provide less in the way of interpretation, such as

how the various covariates associate with crime rates. Instead, we take a more

direct approach that offers the advantages of clustering as well as interpretation.

We model the tract-specific rate λl as a linear function of covariates and cluster

the coefficients of the equation. The clusters of coefficients may provide further

insight into the relationships between crime and demographic characteristics.

8.1. Adjusting for population

The main goal of this section is to demonstrate how to add covariates to our
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model and to explore the benefits of doing so. To this end, we looked at the

population sizes in each of the census tracts as a possible explanatory variable.

Let Xl denote the population of the lth census tract. (We obtained the

populations from the 2,000 census. Section 5 of the Supplementary Material

shows a map of the population density in Washington, D.C..) To incorporate

population into our model, we redefined the tract-specific rate as a linear function

of population, λl = Xl ψl, where ψl is the number of violent crimes per person

in the lth tract. We then placed a DP prior directly on the rate per person

parameter, ψl, yielding the model

ϵl,t ∼ Poisson(Xl ψl θs(t)) l = 1, . . . , L t = 1, . . . , T,

θm ∼ F(ω) m = 1, . . . , 12,

ψl ∼ G l = 1, . . . , L,

G ∼ DP(τ,G0).

(8.1)

It is straightforward to adjust the MCMC sampler described in Section 5 to

incorporate the population covariate, Xl. We change the base measure G0 to

Gamma(0.5,0.5) to reflect the adjustment for population sizes while remaining

weakly informative. After these simple modifications, we run the sampler in the

manner previously described in Section 5.

8.2. Analysis of results

Using the covariate-adjusted multiple PoINAR(1) of Section 8.1, we again

analyzed the counts of violent crimes in Washington. As in Section 7, we begin

by showing the posterior distribution of the number of clusters over the 400

MCMC iterations (again taken from 5 chains, each run for 5,000 iterations).

Figure 4 (right) indicates that the distribution is much narrower when we adjust

for the population density, and has a mode of 14 clusters. This suggests that

population can account for a significant amount of the spatial heterogeneity in

crime. Figure 9 maps the posterior means of the crime rate per person, ψl. This

map highlights three main features: the center of Washington, D.C. has a high

count of violent crimes per person; the northwest portion of the city has very few

crimes per person; and the city has three hot-spots: in the center of the city and

in the eastern and southwestern portions of the city.

These insights, also highlighted by Cahill and Roman (2010), differ from

the conclusions one would make by simply looking at the mean values displayed

in Figure 1 or from our previous analysis. The results emphasize tracts which

exhibit high crime rates per person as opposed to high crime counts and can

help police make future planning decisions, such as where to place a new sta-

tion. These outcomes, important as they may be, are merely a byproduct of
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0.129

0.239

0.331

0.439

Figure 9. Map of the posterior mean values for crime rates per person, ψi.

our estimation method. The more interesting research question is whether the

population covariate can improve the prediction abilities when compared to the

unadjusted model.

We performed a one-week-ahead forecast for the last week in the series using

both the unadjusted model of Section 4.2 and the adjusted model accounting

for population. The overall RMSE of the unadjusted model was 0.9663 whereas

the adjusted model was 0.9713. These results suggest that adding the popula-

tion of the tract to the model does not necessarily improve predictive accuracy.

However, a more extensive analysis would be needed to confidently settle such

issues. Although adding the population of the tract to the model may not im-

prove predictive accuracy, adding the covariate seems to provide a useful benefit

in that the revised model reveals a more interpretable grouping of the time series.

Of course, there are many other covariates that one could consider, for example

measures of poverty, housing characteristics, etc.

9. Discussion

In this paper we have presented a method of forecasting multiple correlated

low-count time series building on the univariate PoINAR framework. The model

induces correlation between the different time series through two sources: an

overall temporal seasonal effect and a clustering on individual rate parameters.

The latter clustering is induced by a Dirichlet process, which encourages sparse

representations in terms of a small number of clusters. The grouping of the

different rates allows our model to borrow strength across the different time

series, shrinking the estimators to provide better out-of-sample forecasts.
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Our model assumes that there is some underlying clustering assignment of

the multiple time series. Moreover, once these clusters are identified, they remain

fixed throughout time. One can relax this assumption and allow temporally

evolving cluster assignments. There are a few ways to create such a mechanism,

for example we might impose dependent Dirichlet process priors, such as those

examined by Taddy (2010).

Finally, although our focus here is on counts of violent crimes, this model

is broadly applicable to many low-count spatio-temporal data sets, including

the number of insurance claims across the U.S., earthquakes across the globe

(Boudreault and Charpentier (2011)), wildfires across counties (Xu (2011)), and

so forth.

Supplementary Materials

The Supplementary Material provides further details on our MCMC sampler

and the baseline models to which we compare. We also include an expanded

discussion and set of results for our simulated data and Washington, D.C. crime

data analyses.
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